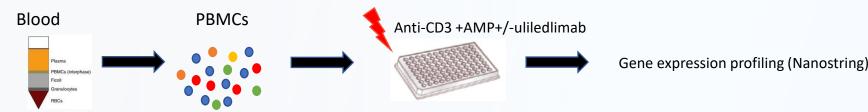
Revealing Novel Immune Modulatory Mechanism of Uliledlimab through the Blockade of **CD73 Pathway**

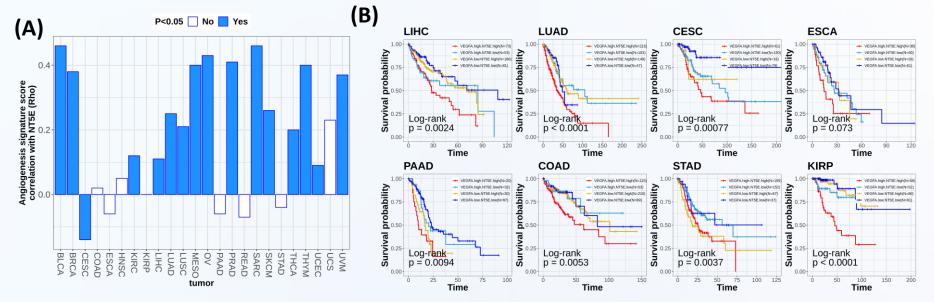

Yanni Zhang, Zhen Sheng, Xinyun Zhu, Yanling Niu, Yuan Meng, Zhengyi Wang, Andrew Zhu. I-Mab Biopharma, Shanghai, China

INTRODUCTION

- Adenosine signaling has emerged as a key immunosuppressive mechanism in the tumor microenvironment, and CD73 is a rate-limiting enzyme for adenosine production.
- Uliledlimab is a differentiated CD73 antibody that binds to a unique epitope to achieve complete inhibition of CD73 and its anti-tumor activity is currently being evaluated in clinical studies in combination with checkpoint inhibitors.
- Here we investigated the immune modulatory mechanism of uliledlimab in different cell subsets and pathways to explore new therapeutic combinations of uliledlimab for cancer treatment.

METHODS

• In vitro PBMC assay in the presence of AMP w/ or w/o uliledlimab


- Analysis of co-expression of CD73 and angiogenesis genes in multiple cancer types and their correlation with survival
 - Association of CD73 and uliledlimab-regulated angiogenesis signature genes identified via Nanostring platform was analyzed in multiple cancer types in TCGA database using Spearman's rank-order correlation test.
 - The Kaplan-Meier method log-rank test were used for the survival analysis of cancer patients with different expression level of CD73 and VEGFA.
- *In vitro* tumor killing assays
 - *In vitro* cytolysis by T cells and NK cells, or phagocytosis by macrophages in response to uliledlimab alone and in combination with PD-1 antibody were evaluated by co-culture of CD73⁺ tumor cells and PBMCs or purified macrophages in the presence of AMP.
- *In vivo* tumor xenograft model
 - In vivo tumor growth inhibition of uliledlimab alone or in combination with PD-1 antibody were evaluated in a NCI-H358 lung cancer model injected with human PBMCs.

(A)

T cell immune checkpoir

mmune checkpoir

Figure 1. Differential gene expression in PBMC by AMP w/ or w/o TJD5 was evaluated using NanoString nCounter®. (A) Expressions of immune inhibitory genes classified by different pathways in T cells, myeloid cells and NK cells were up-regulated by AMP. (B) Signature genes involved in the recruitment of immuno-suppressive cells and angiogenesis as well were also increased by AMP. The induction of these signature genes by AMP was inhibited by uliledlimab.

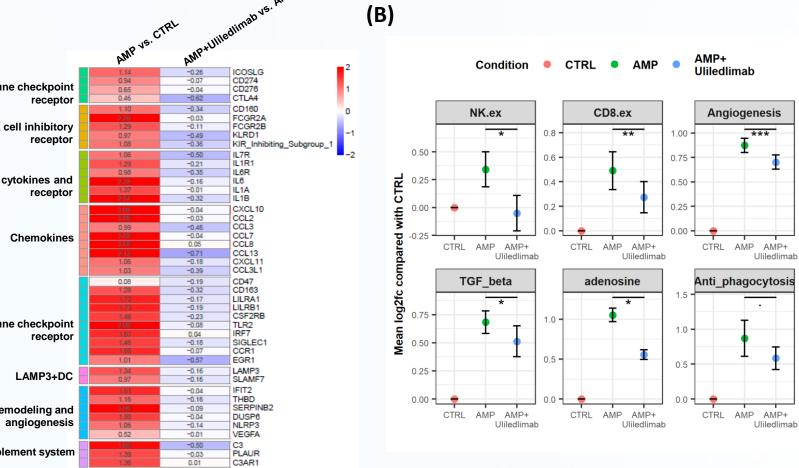


Figure 2. The signature genes involved in the angiogenesis pathway were positively correlated with CD73 expression in multiple tumors in TCGA database (p<0.05) (A), and co-expression of CD73 and VEGFA at a high level was associated with poor prognosis (p<0.05) (B).

Corresponding authors: Andrew.Zhu@i-mabbiopharma.com

RESULTS

Immune inhibitory signature genes were up-regulated by AMP that were reversed by uliledlimab treatment

Uliledlimab increased the cytotoxic activity of T cells and NK cells as well as the phagocytic activity of macrophages

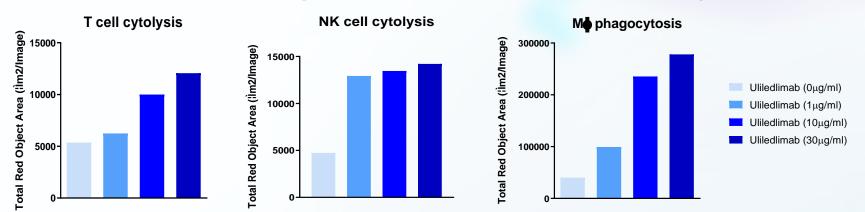


Figure 3. In vitro cytolysis or phagocytosis of immune cells in response to uliledlimab was investigated by co-culturing CD73⁺ tumor cells with PBMCs or purified macrophages in the presence of AMP. The activity was measured by pHrodo Red staining.

Uliledlimab enhanced anti-tumor activity in combination with **PD-1** antibody

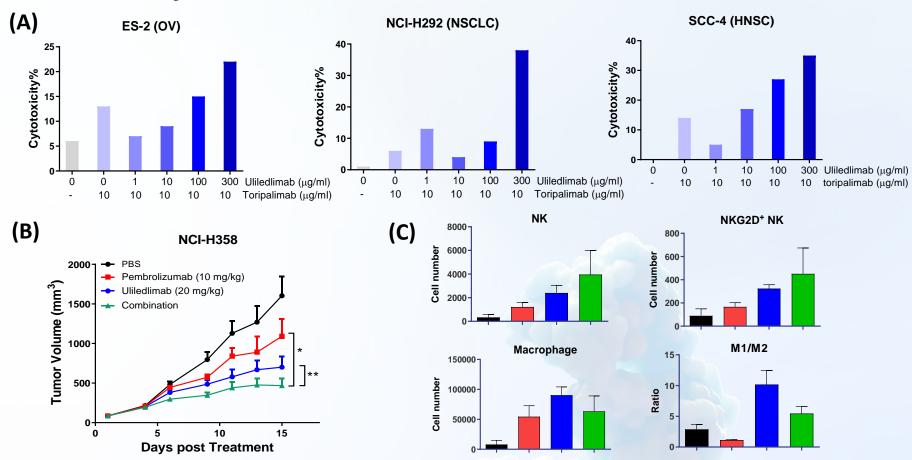


Figure 4. Enhanced anti-tumor activity of uliledlimab in combination with PD-1 antibody (A) In vitro tumor killing by PBMCs in the presence of uliledlimab and toripalimab measured by CellTiter-Glo (B) In vivo anti-tumor activity of uliledlimab and pembrozlimab alone or combination in NCI-H358 model and tumor infiltrating immune cell analysis by FACS (C).

- phagocytosis by various effector cells.
- combination therapies of uliledlimab in cancer treatment.

Poster #1151

CONCLUSION

Our study delineated the immune regulatory mechanism of uliledlimab, including down-regulation of immuno-suppressive pathways and increased cytolysis and

• In addition to combination with PD-1 inhibitor, identification of new pathways regulated by uliledlimab provides the scientific rationale to explore new