INTRODUCTION

Givastomig (TJ-426444.NH), or Giva, is a first-in-class bispecific antibody designed to engage tumor cells with a wide range of Claudin 18.2 expression. Giva potently and selectively killed tumor cells and T cells with a wide range of Claudin 18.2 expression at 100 nM. Claudin 18.2 or Giva-activated T cell activity was observed in xenograft assays using CD11c-positive tumor-draining lymphoid (CD11cPositive LN) tumor cells derived from mice with a wide range of Claudin 18.2 expression. Here we further investigate the in vivo pharmacological and pharmacodynamic effects of Givastomig in combination with first-line and second-line (2L) therapies for gastric cancer.

METHODS

- **The CLDN1.2 expression in formalin-fixed, paraffin-embedded (FFPE) tumors of three human gastric cancer cell lines (MKN-45 parental, MKN-45 #18, and MKN-45 #14) was determined by immunohistochemistry (IHC) staining.**
- **The T cell activation and tumor-killing mediated by Giva were investigated, either alone or in combination with other drugs, using a co-culture assay of T cell and PBMCs. T cell activation was evaluated by the production of IFN-γ, and soluble CLDN18.2 expression from PBMCs.**
- **Anti-tumor activity and pharmacodynamic effects of the combination treatment were also examined in an in vivo gastric cancer patient-derived xenograft (PDX) model.**

RESULTS

Givastomig-induced T cell activation in a dose- and CLDN1.2 expression-dependent manner

Figure 1. The CLDN1.2 expression in three human gastric cancer cell lines, MKN-45, MKN-45 #18, and MKN-45 #14, was determined by immunohistochemistry (IHC) staining in formalin-fixed, paraffin-embedded (FFPE) tumor tissues. T cell numbers in combination with different CLDN1.2 expression were analyzed by an IFN-γ ELISA. The T cell杀伤 was evaluated by the production of IFN-γ per cell in each condition.

Givastomig exerts bystander tumor killing: T cells activated by Giva and CLDN1.2-positive tumor cells leads to the killing of nearby CLDN1.2-negative tumor cells

Figure 2. Givastomig tumor killing was evaluated in co-culture of PBMCs with homogenous tumor cells (A) or CLDN1.2-negative tumor cells (B) as the effect of the whole tumor cell (T) or IFN-γ. In co-culture of PBMCs with heterogenous tumor (C), T cell-mediated tumor killing was observed in the PBMCs only (E:T = 1:1), in co-culture of PBMCs with a mixture of CLDN12-negative (parental) and CLDN12-expressing (45-18) at ratios 10:0, 10:1, 1:10, 1:100. Givastomig tumor killing by PBMCs in parental MKN45 cells was further enhanced by the addition of nivolumab (Nivo) + 5-fluorouracil (5-FU) or ramucirumab (Ram) to the mixture of tumor cells and normal PBMCs. The effect of the effect of the whole tumor cell (T) or IFN-γ on CLDN12-negative tumor cells (CLDN12-low tumor cells) is shown as CLDN12-expression dependent bystander killing (B).

Givastomig-induced tumor killing is enhanced in combination with chemotherapy used in 1L or 2L treatment for gastric cancer

Figure 3. The expression levels of CLDN12 or MKN45/45-18/45-18 were analyzed using Flow cytometry. Tumor-killing by Giva, alone or in combination with other therapies, was evaluated in co-culture of PBMCs with Givastomig or nivolumab. Giva, nivolumab, or 5-FU, PTX, Ram, or Oxa in combination with CLDN12-negative tumor cells at the E:T = 1:10 or 1:1 or 1:100. In co-culture of tumor cells with a mixture of CLDN12-positive and CLDN12-negative tumor cells, Giva (10nM) increased tumor killing in the presence of chemotherapy. The combination of nivolumab and Giva exhibited enhanced tumor killing activity compared to one-drug treatment alone. In summary, the minimal dose to achieve maximal tumor-killing activity in tumor cells is 2.5 nM (10% CLDN12-positive tumor cells) or 5 nM (20% CLDN12-positive tumor cells). CDDP control treatment (without Giva).

CONCLUSION

- **An in vitro co-culture system that mimics tumor microenvironment, givastomig (TJ-426444.NH) induced T cell activation in a dose- and CLDN1.2 expression-dependent manner and bystander tumor-killing in which co-cultured tumor cells were treated with givastomig T cell activation by CLDN12-positive tumor cells leads to the killing of nearby CLDN1.2-negative tumor cells, implying the therapeutic potential of givastomig in the treatment of solid tumors with broad and heterogenous CLDN1.2 expression.**
- **In the same co-culture system, givastomig-induced tumor killing is further enhanced in combination with chemotherapies used in 1L or 2L treatment for gastric cancer.**
- **Givastomig combined with nivolumab + POLYFOX exhibited synergistic anti-tumor activity, accompanied by increase in tumor-infiltrating lymphocytes, in a gastric cancer PDX model.**

Givastomig, a novel Claudin18.2/4-1BB bispecific antibody, exerts bystander tumor-killing and synergistic anti-tumor activity with therapeutics in 1L2L treatment for gastric cancer

Boojun Liu, Xiaoyi Fu, Zhen Meng, Xia Xia, Chenyu Pan, Ai Li, Zhenniu Lu, Zheng Wang, Jinho Jang, Andrew X. Zhu

1-1 Mab BioPharma, Shanghai, China; 2. ABL Bio IBC, Gyeongsang, Republic of Korea

Corresponding authors: Andrew.Zhui@mabbiopharma.com